Transformation-mediated Plasticity in CuZr based Metallic Glass Composites: A Quantitative Mechanistic Understanding

نویسندگان

  • B. A. Sun
  • K. K. Song
  • S. Pauly
  • P. Gargarella
  • C. T. Liu
  • J. Eckert
  • Y. Yang
چکیده

In this paper, we present a thorough stress analysis of the Cu-Zr metallic-glass composite with embedded B2 particles subject to a martensitic transformation. Within the framework of the Eshelby theory, we are able to explain, in a quantitative manner, (1) the formation of three types of shear bands with distinct morphologies as observed experimentally in the severely deformed Cu-Zr metallic-glass composite and (2) the work hardening ability of the Cu-Zr metallic-glass composite as related to the coupled effects of elastic back stress and elastic mismatch caused by the martensitic transformation. Furthermore, we also discuss the issues about the stress affected zone of the individual B2 phase and the stability of the crystalline-amorphous interface. Given the general agreement between the theoretical and experimental findings, we believe that the outcome of our current work can lead to a deeper understanding of the transformation-induced plasticity in the Cu-Zr based metallic glass composites, which should be very useful to the design of the metallic-glass composites with improved ductility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local melting to design strong and plastically deformable bulk metallic glass composites

Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique...

متن کامل

Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

In recent years, CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by in...

متن کامل

Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites

The microstructures and mechanical properties of (Cu0.5Zr0.5)100−xZnx (x = 0, 1.5, 2.5, 4.5, 7, 10, and 14 at. %) bulk metallic glass (BMG) composites were studied. CuZr martensitic crystals together with minor B2 CuZr and amorphous phases dominate the OPEN ACCESS

متن کامل

Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites

As two important mechanical properties, strength and ductility generally tend to be muturally exclusive in conventional engineering materials. The breakthrough of such a trade-off has been potentiated by the recently developed CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory CuZr(B2) phase. Here the microstructural dependences of tensile properties for the CuZr-based...

متن کامل

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016